Document Type

Article

Publication Date

1-1-2012

Comments

This article has been peer reviewed. It was published in: Cell Death and Disease

Volume 3, Issue 1, January 2012, Article number e253.

The published version is available at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3270271/. DOI: 10.1038/cddis.2011.137.

Copyright © 2012 Macmillan Publishers Limited.

Abstract

B-cell lymphoma 2 (Bcl-2) homology 3 (BH3)-only proteins represent a class of pro-apoptotic factors that neutralize pro-survival Bcl-2 proteins, and, in some cases, directly activate Bax. The mechanisms of control and the role of BH3-only proteins, such as Bcl-2 like protein 11 extra large and Bad are well studied. By contrast, relatively little is known about the regulation and role of Bcl-2 modifying factor (Bmf). The B-RAF oncogene is mutated in ∼8% of human tumors. We have previously shown that Bmf is upregulated at the transcript level and is required for apoptosis induced by targeting B-RAF signaling in tumor cells harboring mutant B-RAF. In this study, we show that Bmf is regulated at the post-translational level by mutant B-RAF-MEK-ERK2 signaling. Extracellular signal-regulated kinase (ERK2) directly phosphorylates Bmf on serine 74 and serine 77 residues with serine 77 being the predominant site. In addition, serine 77 phosphorylation reduces Bmf pro-apoptotic activity likely through a mechanism independent of altering Bmf localization to the mitochondria and/or interactions with dynein light chain 2 and the pro-survival proteins, B-cell lymphoma extra large, Bcl-2 and Mcl-1. These data identify a novel mode of regulation in Bmf that modulates its pro-apoptotic activity in mutant B-RAF tumor cells.

Included in

Oncology Commons

Share

COinS