Document Type

Article

Publication Date

11-17-1997

Comments

This article has been peer reviewed. It was published in: The Journal of experimental medicine.

Volume 186, Issue 10, November 1997, Pages 1655-62.

The published version is available at PMID: 9362526. Copyright © Rockefeller University Press

Abstract

The transporter associated with antigen presentation (TAP) complex shuttles cytosolic peptides into the exocytic compartment for association with nascent major histocompatibility complex class I molecules. Biochemical studies of murine and human TAP have established that substrate length and COOH-terminal residue identity are strong determinants of transport efficiency. However, the existence of these specificities in the intact cell and their influences on T cell responses have not been demonstrated. We have devised a method for studying TAP- mediated transport in intact cells, using T cell activation as a readout. The approach makes use of a panel of recombinant vaccinia viruses expressing peptides containing the Kd-restricted nonamer influenza nucleoprotein residues 147-155. The COOH terminus of each construct was appended with a dipeptide composed of an internal threonine residue followed by a varying amino acid. Synthetic peptide versions of these 11-mers exhibit vastly different transport capabilities in streptolysin O-permeabilized cells, in accordance with the predicted influence of the COOH-terminal residues. Presentation of the endogenously expressed version of each construct requires TAP-mediated transport and cooexpression with a vac-encoded exocytic COOH-terminal dipeptidase, angiotensin converting enzyme, to allow liberation of the minimal epitope. Recognition by epitope-specific CTLs therefore signifies TAP-mediated transport of a complete 11-mer within the target cell. Under normal assay conditions no influences of the COOH-terminal residue were revealed. However, when T cell recognition was limited, either by blocking CD8 coreceptor interactions or by decreasing the amount of transport substrate synthesized, significant COOH-terminal effects were revealed. Under such conditions, those peptides that transported poorly in biochemical assays were less efficiently presented. Therefore, TAP specificity operates in the intact cell, appears to reflect previously defined rules with regard to the influence of the COOH-terminal residue, and can strongly influence T cell responses.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.